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1. INTRODUCTION

1.1. Philosophical Underpinnings

My interest in the different roles models play in theoretical and mathemat-
ical physics arose when I was preparing the annotations I was asked to
write for Volume 6 of Wigner’s Collected Works. (59) I noticed then that
Wigner had been using the word model in two different contexts, although
he did not comment explicitly on his reasons for doing so. The difference,
I argue, can be formalized in the following two definitions.

Definition 1. H-models explore the connections to be established
between the syntactic framework—especially the physical postulates—and
its physical semantic relevance: the observability of its concepts and their
applicability to the ‘‘actual world’’ as apprehended by laboratory experi-
ments.

Definition 2. L-models test the correctness and economy of the
syntax: the logical consistency and independence of its axioms, the formal
value of its assertions and theorems.



I discuss in detail elsewhere (13–15, 17) how this distinction differs from the
other approaches to models in the philosophy of sciences. (4, 11, 22, 24, 47, 49, 52, 53, 58)

Let it suffice here to say that the present paper proposes to show how the
distinction between H- and L-models helps recognize the various roles
models play as active agents of change. Indeed, while operating within their
own separate means, models from both classes are often designed to test
their formal premises in such a way as to suggest revisions of the theoreti-
cal core and/or the consideration of new conjectures. In this paper, I
situate Lieb’s methodology in this perspective.

1.2. Examples of Straight H- and L-models

In order to anchor the discussion, I recall first a few examples of
models in which Wigner was involved, see ref. 13. Three H-models in
nuclear physics are reviewed there: the Heisenberg–Wigner isospin, the
compound nucleus, and the random matrix depiction of the distribution
of energy levels. L-models are also illustrated there with three examples
from the foundations of quantum mechanics: superselection rules, Bell’s
inequalities, and models for quantum measurement processes.

Culled now from Elliott Lieb’s own contributions to equilibrium sta-
tistical mechanics, another set of contrasting models obtains straight-
forwardly. Consider indeed for H-models: the imperfect Bose gas, (37) the
Jellium model, (39) the Hubbard model; (31) and for L-models: the Lenz–Ising
model, (40, 51) the X–Y model, (35) and the Pauling model for the residual
entropy of ice (26) (the exact solution of which was spectacularly presented
by Elliott, at the very first ‘‘Yeshiva meeting’’ I attended, the ancestor of
today’s Rutgers meetings).

2. MODELS IN MUTATION

The taxonomy of models advanced in Section 1 is stable enough to be
immediately apparent in the simple cases such as the snapshots offered
there. Yet, the purposes of a model may become more fluid and transient
in other theories. While these mutations may be mostly a matter of math-
ematical rigor, they generate often—although not always—new conceptual
vistas beyond the original domain of the models considered.

In this and the next Sections, two examples drawn from contributions
of Lieb and collaborators—and two from other sources—will illustrate
shifting of weights that occur in the modelling practice of theoretical and
mathematical physicists.

The Gross–Pitaevskii equation started as a typical H-model; (20, 46) yet
Lieb et al. (41) showed that most of its main predictions follow as
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mathematically controllable consequences from first principles, this con-
trollability gaining the model much of the flavor of a L-model. Yet, here
the intended experimental domain of applicability has remained unchanged
in as much as the problem is to understand the Bose–Einstein conden-
sation of an interacting gas. For details and further refs., see ref. 17,
[Section 14.2.2].

The BCS model achieved at first great successes as a H-model for
superconductivity.(3) Further analysis evidenced a mathematical structure
that converted the original model to a choice L-model for spontaneous
symmetry breaking in algebraic quantum many-body theory (16, 21, 54). An
account of the contemporary and subsequent far-reaching avatars of the
BCS model in condensed matter and elementary particle physics is sketched
by Anderson, (1) who mentions also refs. 2 and 23.

The Dyson model was advanced as a L-model (12) to delineate the
boundaries outside of which the van Hove–Ruelle theorems (48, 56) do not
apply. After having performed well in that capacity, its exact solvability
can be exploited most profitably (6, 7, 9) to obtain an instructive L-model
for a much later stage in the theory of phase transitions, namely the
Kadanoff–Wilson–Fisher scaling program that offers a rich collection of
computationally challenging H-models, see, e.g., ref. 8.

3. THE THOMAS–FERMI MODEL

The changing status of the Thomas–Fermi model is even more inter-
esting as it occurs in contexts where the arena for which it was intended has
changed drastically: from the quantum description of the properties of a
single atom with a few electrons, to the understanding of the stability of
matter in bulk, e.g., stars.

The Thomas–Fermi model (19, 55) saw the light of day as a H-model in
1927—i.e., in the beginning of the second phase in the development of
quantum theory—when it was realized that the quantum mechanical
problem of determining the energy spectrum of the hydrogen atom could
not receive a similarly simple and yet exact solution for the higher ele-
ments. Thus, the model designed by Thomas and Fermi is a H-model that
describes an atom as a cloud of electrons surrounding the nucleus. This
simple picture is approximate by design in order to avoid the then insur-
mountable complications that a rigorous treatment of the Schrödinger
equation would have entailed.

Specifically, the initial aims of the model were: to compute the elec-
tronic distribution and the ionization energy; to determine how the elec-
trostatic potential varies as a function of the distance from the nucleus; and
to understand the onset of the periodic system of elements. Fermi points
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out explicitly that, in order to take into account the Pauli exclusion prin-
ciple, the cloud of electrons must obey the quantum statistics he had pro-
posed only the previous year; (18) we would talk today of the Fermi–Dirac
statistics, and thus of the cloud of electrons as a Fermi gas.

The model certainly did not go unnoticed. Within a few years, its
predictions, its theoretical justification and some improvements on it
were widely discussed, e.g., by Frenkel (1928), Dirac (1930), Lenz (1932),
Fock (1932), Jensen (1933), von Weizsäcker (1935). By the middle of
the twentieth century, the model had become a routine staple in the
quantum mechanics curriculum, see, e.g., ref. 50 [pp. 281–283], ref. 25
[pp. 235–240], and ref. 45 [pp. 524–528].

To emphasize its heuristic character, I sketch first the model’s original
version. Its two ingredients are: r(r), the spherically symmetric ground
state one-particle electron density, with the normalization

4p F
.

o
dr r2r(r)=Z; (3.1)

and the average electric potential F(r) in the atom, due to (a) the nucleus,
assumed to be a point at 0 with charge eZ, and (b) the continuous electric
distribution er(r).

The model is semi–classical in the following sense.
The classical aspect is that F is to satisfy the Poisson equation

DF —
1
r
d2

dr2
(rF)=4per with lim

rQ 0
F(r)=eZ. (3.2)

The quantum aspect of the model is that r is obtained from

n(r, p)=32h
−3 if E — 1

2m−eF < Eo
0 if E > Eo

(3.3)

by integration over p (upon putting Eo=0):

r(r)=3
8p
3h3
(2meF)3/2 if F > 0

0 if F < 0.
(3.4)

The substitutions

r=Z−
1
3bx; F=

Ze
r
q; b=

1
2
13p
4
2
2
3 (

2

me2
(3.5)
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introduce the dimensionless quantities q and x, in terms of which the basic
equations (4.2) and (4.4) combine to

q'(x)=3x
−12q3/2(x) if q > 0
0 if q < 0

4 with q(0)=1. (3.6)

(4.6) entails q(xo)=0 for exactly one xo ¥ (0,.], and thus

1=F
xo

0
dx x

1
2q
3
2=F

xo

0
dx xq'=xoq −(xo)+1 (3.7)

so that q −(xo)=0 and thus xo=.; hence (4.6) reads

q'(x)=x−
1
2q3/2(x) with q(0)=1 and q(.)=0 (3.8)

The solution of this equation obtains numerically, allowing to plot the
graph of the functions r(r) and F(r). The solution of the model is hereby
completed. Note that the analytic simplicity of the model permits the
conclusion (4.8) to be an exact consequence of the basic assumptions (4.2)
and (4.4). Nevertheless, this fact by itself does not suffice to qualify the
model as a L-model since it is a priori inconsistent: it is semi-classical as its
assumptions borrow from both classical and quantum theories.

This calls for two questions: (1) how experimentally accurate are the
model’s predictions; and (2) how much of the model can be justified from
the basic principles of quantum theory alone.

Scholium 1. Let Ra be the radius of the sphere centered at the
nucleus and containing the fraction (1−a) of the Z electrons, i.e.,

(1−a) Z=F
Ra

0
dr r2r(r). (3.9)

Then

Ra=Z−
1
3bXa (3.10)

where Xa is the unique solution of

q(Xa)−Xa q −(Xa)=a. (3.11)

Corollary 3.1. If one takes the same value of a to define the radius
of all atoms, Ra decreases as Z−

1
3.
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Corollary 3.2. Define the radius of the atom as the radius of
the sphere that contains all the electrons but one, i.e., R(Z) — Ra=Z−1=
Z−

1
3 b XZ−1, where XZ−1 is the numerical solution of (4.11) for a=Z−1, and

b % 0.5×10−8 cm is the constant b defined in (4.5). Then R(Z) increases
monotonically from 2.2×10−8 cm for Z=25 to 2.8×10−8 cm for Z=100.

Remarks. The order of magnitude is correct. However: (1) the largest
atom is cesium (Z=55); afterwards R(Z) decreases, albeit slowly; (2) the
model yields an electron density with unreasonable properties very close
and very far from the nucleus; (3) the natural extension of the model to the
case of several nuclei does not allow for the existence of stable molecules;
(4) its extension to the relativistic domain does present serious challenges.

These problems are corrected in the modern versions of the
Thomas–Fermi model devised by Lieb and co-workers, and explained in
refs. 5, 27, 29, 30, and 42. The results cover two corrections proposed early
in the game, the first by Dirac (10) to include the exchange term, and the
second by von Weizsäcker; (57) as indicated already by the titles of refs. 5,
29, 30, and 42, the domain of applicability of this circle of ideas is thus
extended from atoms to molecules, solids, and stars. The proofs depend on
the technical refinements developed in refs. 36, 44, and 43 for the thermo-
dynamical limit of Coulomb systems, the stability of matter, and the
Hartree–Fock method.

In the context of the present section, the main feature of these results
is that reasonable answers, developed to justify the models from first prin-
ciples, have put on a firm footing their asymptotic validity. In the sequel, to
focus on the latter aspect, it is sufficient to review the simplest case where
the von Weizsäcker and Dirac corrections are not yet taken into account;
references are cited below together with the statement of the results.

The original problem demands a reliable estimate for the ground state
energy E=(Y, HY) of an atom consisting of N electrons and a point
nucleus of charge Z=N. The Hamiltonian is then H=T+A+B where T
is the kinetic energy of the electrons; A is the contribution to the potential
due to the interaction between the electrons and the nucleus; and B is the
contribution to the potential due to the interaction between the electrons:

H — C
N

j=1
N2j+Z C

N

j=1
|xj |−1+ C

1 [ i < j [N
|xi−xj |−1 (3.12)

where the units have been chosen such that (
2

2m=1; e=1.
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Lemma 3.1 [The 5/3 law(44)]. For all Y ¥ L2(R3N) antisymmetric
with ||Y||=1, and all positive integer N, let

TY — C
N

j=1
F
R3N

dx1 dx2 · · · dxN |NxjY(x1, x2,..., xN)|
2, (3.13)

and

rY(x) —N F
R3(N−1)

dx2 · · · dxN |Y(x, x2,..., xN)|2. (3.14)

Then there exists a universal constant K > 0 such that

TY \ 22/3K F
R3
dx rY(x)5/3. (3.15)

Remarks. (1) The factor 22/3 disappears when the spin of the elec-
trons is taken into account, i.e., when Y ¥ L2(R3N; C2

N
). (2) The numerical

value of K is not important; one knows K \ (2.7709) 2−2/3=1.7455, and
one conjectures that Kc=3(3p2)2/3/5=5.7425. (3) The power 5/3 is the
main point; it reflects the dimensionality of the system. (4) The bosonic
version of the 5/3 law is discussed in ref. 28.

Definition 3. With Kc=3(3p2)2/3/5=5.7425 , the Thomas–Fermi
functional ETF(r) for r ¥ L5/3(R3) 5 L1(R3) is:

ETF(r) —Kc F
R3
dx r(x)5/3

−Z F
R3
dx |x|−1 r(x)

+1
2 F
R3

F
R3
dx dy r(x) r(y) |x−y|−1.

ˇ (3.16)

The Thomas–Fermi ground state energy is:

ETF — ETF(N, z) — inf 3ETF(r) : F dx r=14 . (3.17)

Theorem 3.1 (TF is asymptotically exact;(30) see also the earlier

papers(29, 42)). Let 0 < l [ 1; zN=N/l for N=1, 2,...; E(N, zN) be the
Schrödinger ground state energy for an atom with nuclear charge zN and
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N electrons; rN(x) be, as in (4.14), the density of any ground state YN;
ETF(N, zn) be the corresponding Thomas–Fermi energy; and rTFN be the
corresponding Thomas–Fermi density. Then

lim
NQ.

E(N, zN)
EFT(N, zN)

= lim
NQ.

E(N, zN)
z7/3ETF(l, 1)

=1. (3.18)

In the sense of weak L1(R3) convergence on compact sets,

lim
NQ.

z−2rN(z−1/3x)= lim
NQ.

z−2rTFN(z−1/3x)=r̃(x) (3.19)

where r̃(x) is the TF minimizer for z=1 and N=l.

There is also a result for l > 1, but the above theorem is enough for
what I want to illustrate.

Recall that the Thomas–Fermi model was devised for atoms with
several electrons, a situation where the Schrödinger eigenvalue equation for
the ground state cannot be solved explicitly. Theorem 4.1 gives the precise
sense in which the Thomas–Fermi model is an asymptotic L-model for large
atoms, i.e., precisely for the situation where the Schrödinger equation itself
cannot be solved explicitly. This theorem admits generalizations—to the
TFW, TFD, and TFDW models—wide enough to prompt the upbeat
concluding comment of Lieb’s Gibbs lecture. (30)

For the commentary on method pursued in the present paper, the
Thomas–Fermi model is a prime example of a H-model evolving to a
L-model and suggesting further H-models and the rigorous delineation of
their asymptotic domain of applicability.

4. CONCLUSIONS

When asked for his guiding precepts, Elliott succinctly responded: ‘‘the
pursuit of a consistent explanation of phenomena,’’ (34) a lapidary statement
by which most theoretical physicists would want to abide, albeit in a
variety of ways.

Some, like von Neumann or Wightman and Haag, focus on boiling
essential experience of phenomena down to concise axioms, and/or rich
abstract theories.

Others, like Lenz (with the Ising model) or Dyson (with his hierarchi-
cal model), advance concrete explanatory models that are simple enough to
obtain rigorously from the general doctrine some specific conclusions that
cannot be changed without modifying the core of the doctrine from which
they derive. These are L-models.
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Still other physicists, like Wigner (especially when he wears his nuclear
physicist’s hat), Bardeen et al., Gross and Pitaevskii, or Thomas and
Fermi, concentrate on specific laboratory experiments to identify the
phenomena, and their theoretical explanations usually propose H-models.

In the rich multiplicity of the models that bear Lieb’s indelible mark,
I had to select here only a few representatives, those that help most in
tracing his general methodology.

Firstly, pure L-models, the most spectacular of which was the ice
model, which he solved exactly, disproving beyond doubt the Nernst
conjecture that the entropy must vanish when the temperature approaches
the absolute zero. Among the other L-models he considered, several others
focus on the essential features that delineate the nature of phase transi-
tions, rather than presenting detailed prescriptions on how to compute
critical coefficients for specific fluids of ferromagnetic substances.

Secondly, Lieb may be at his best when he takes a H-model, such as
Thomas–Fermi’s, reformulates it in terms of first principles, and then pro-
ceeds to study the asymptotic regime in which it can be solved exactly, thus
producing a reliable L-model. The mathematical structures he brings to
light in so doing often results in considerable broadenings of the original
domain of applicability of the models from which he started. This is indeed
one of the most instructive methodological lessons a physicist may draw
from Elliott’s work.
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